Thermal energy distribution of electrons in the mid-latitude ionosphere

Group 1

Racheal Athieno, M Hasan⁻Chowdhury, Ian Cohen, Mohsen Ghezelbash, Joshua Smith

ISR Summer School, 2012, Banff, Alberta

Outline

- Review
- Experiment Theory
- Results
- Analysis
- Conclusions
- Craig Captioned

ISR Review

- Free e⁻ in ionized medium scatter radio waves
- ISR: radar pulses scatter off electrons in ionospheric plasma creating an incoherent scatter return
- ISRs can:
 - ✓ measure $N_e(z,t)$ and $T_e(z,t)$ out to several R_E
 - ✓ measure auroral ionization
 - ✓ detect transient streams of charged particles coming from space

Review of Auroral

- Accelerated particles with energies of 1-10s keV (e⁻) and 10-100 keV (p⁺)
- Particles can penetrate as far as 100 km altitude, colliding with multiple atmospheric molecules along the way
- These molecules eventually relax back to the ground state by emitting photons
 - green emission from oxygen
 - red/blue emission from nitrogen

Experiment Objectives

- Collect electron data (Te, Ne) at 24 locations along four different mid-latitude magnetic field lines near PFISR
- Calculate the thermal and kinetic energy profiles of the incident auroral electrons across these field lines
- Analyze and interpret these energy distribution profiles

...AND NO AURORAL PRECIPITATION

Electron Density profile

NEVER FEAR!

WE LOOKED AT THE DATA ANYWAY! (EH?)

Twice actually...

ISR Summer School, 2012, Banff, Alberta

10

Mandatory Canadian content

Energy Calculation

- Can't look at auroral precipitation energy, so we will only look at thermal energy
- Thermal Energy Per Volume of electrons:

$$U_e = \frac{1}{2} f N_e k T_e$$

k = Boltzmann constant = 8.617 x 10⁻⁵ eV/K

 N_e = electron density

$$T_e$$
 = electron temperature
 f = dearees of freedom = 3

DATA ANALYSIS #1: MATLAB

Saturday, August 4, 2012

DATA ANALYSIS #2: IDL

Conclusions

- No auroral precipitation and slight standard deviation from theoretical observation points
- 2 independent data analyses:
 - Both able to resolve F-region peak at ~250-300km
 - Suspicious lack of evidence of E-region (most likely due to poor resolution)
- High energy densities (~10's GeV/m⁻³)
 - Possibly real if ionosphere has been absorbing solar radiation all day
- Confident in strength of our theoretical design
- Successfully used basic kinetics to calculate thermal energy

ISR Summer School, 2012, Banff, Alberta

ACKNOWLEGDMENTS

- Craig Heinselman
- Josh Semeter and Phil Erickson
- All the other organizers "grown-ups"
- Group 5 for allowing us to use their data (even though we didn't)