Using ISR to study ultra-low frequency (ULF) waves and their effects on the ionosphere

Frances Fenrich Department of Physics, University of Alberta

> ISR Workshop August 3, 2012

Outline

Introduction to ULF waves

Radar Observations of ULF waves

- ULF waves in the polar cap
- Using ISR to study ULF waves

ULF Waves

ULF = Ultra-Low-Frequency range from 1 mHz – 1 Hz

"Ultra" low \implies lower than natural plasma frequency

Geomagnetic ULF Pulsation classes (Jacobs et al. 1964)							
	Continuous pulsations					Irregular pulsations	
	Pc 1	Pc 2	Pc 3	Pc 4	Pc 5	Pi 1	Pi 2
T [s]	0.2-5	5-10	10-45	45-150	150-600	1-40	40-150
f	0.2-5 Hz	0.1-0.2 Hz	22-100 mHz	7-22 mHz	2-7 mHz	0.025-1 Hz	2-25 mHz

FLRs from 0.5- 5mHz

What is a Field Line Resonance (FLR)?

MHD Waves

One Fluid Ideal MHD Yields Three Wave Modes:

1. Alfven or Intermediate Mode

-energy propagates along B field -non-compressional

$$\omega^2 = k_{//}^2 V_A^2$$
 $V_A^2 = B^2 / (\mu_o \rho)$

2. Fast Mode

energy can propagate across B field compressional

2. Slow Mode

- energy propagates ~along B field
-compressional
-doesn't propagate in cold plasma

 $\omega^2 = k^2 V_A^2$ for cold plasma

 $\omega^{2} = k^{2} \{ (V_{A}^{2} + C_{s}^{2}) - [(V_{A}^{2} + C_{s}^{2})^{2} - 4C_{s}^{2}V_{A}^{2}\cos^{2}\theta]^{1/2} \} / 2$

 $\omega^{2} = k^{2} \{ (V_{A}^{2} + C_{s}^{2}) + [(V_{A}^{2} + C_{s}^{2})^{2} - 4C_{s}^{2}V_{A}^{2}\cos^{2}\theta]^{1/2} \} / 2$

A field line resonance is a standing shear Alfven wave along a geomagnetic field line.

Two modes in a dipole field geometry:

Looking radially towards earth

Looking azimuthally

Observed m typically ranges from 1 to 100

Coupling of fast mode to shear Alfven mode \implies FLR

Distinguishing Characteristics of a FLR

Magnetic Latitude

Decreasing phase with latitude > Poleward phase propagation

Why should we care about ULF waves and FLRs?

➤ULF waves play a significant role in the coupling of energy from solar wind to magnetosphere and ionosphere.

≻ULF waves are associated with energetic electron acceleration in the radiation belt. (Elkington et al. GRL, 1999)

➢FLRs can be used to infer equatorial plasma densities. (Waters et al. JGR, 1996)

➢FLRs play a role in auroral arc generation and substorm onset. (Samson et al. JGR 1991; Samson et al. JGR, 1992)

FLRs are associated with auroral arcs (Samson et al. JGR 1991; Samson et al. JGR, 1996; Lotko et al. GRL 1998; Rankin et al. GRL, 1999)

Observation of ULF FLRs in the Ionosphere with Radar

Coherent Radar

Backscatter is Doppler shifted by the line-of-sight speed of the ionospheric irregularities which flow with the background ionospheric convection.

Super Dual Auroral Radar Network

*** • • • • • ** =>>

SuperDARN Time Series plot: Prince George

Interval 1 Bandpass at 1.7-2.1 mHz and Calculate Analytic Signal Amplitude and Phase: A(t) = f(t) - iH(t)

Prince George Frequency Range: 1.7 – 2.1 mHz Time: 23:00 UT Nov. 20 2003

Prince George Frequency Range: 1.7 – 2.1 mHz Time: 22:30-23:30 UT Nov. 20 2003

Amplitude

Phase

SuperDARN Range-Time plot: Kodiak

Kodiak FFT Spectra 02:00-03:00 UT Nov. 21, 2003.

Kodiak Alaska Frequency Range: 1.5 – 1.9 mHz Time: 02:00-03:00 UT Nov. 21 2003

Amplitude

Phase

Incoherent Scatter Radar Observations of ULF Waves at Auroral Latitudes

Eiscat Incoherent Radar Observations of Pc5 Waves

Lester et al., Annales Geophysicae, 2000

➢ Eiscat observes oscillations in electron density, electron and ion temperature, flow velocities, conductivities associated with Pc5 FLRs.

➤The ionospheric plasma response to ULF waves varies with local time, azimuthal wave number and altitude.

ISR Observations of a Global ULF Wave

Mishin et al., J. Geophys. Res.,, 2002

ISR Convection velocities and IMAGE ground magnetic fields associated with FLR

F-layer plasma densities attributed to gravity waves generated by ULF electric fields.

Observation of ULF Waves in the Polar CAP

Evidence for Solar Wind Solar Wind Driven ULF Cusp Pulsations Rae et al., JGR 2004

 $dB/dV = -u_o m_p (N_p + 4N_\alpha)^{1/2}$

Solar wind Alfven wave at 1.9 mhz drives 1.9 mhz pulsed particle and ionospheric flow signatures in cusp.

Similar results by Prikryl et al., 1998, 1999, 2002

SuperDARN observation of the driver wave associated with fLRs A.Z. Nedie, R. Rankin and F.R. Fenrich, J. Geophys. Res., 2012

Dec. 26, 2000

Hankasalmi radar observation of coherent phase on open field lines Dec 26, 2000, 00:00-02:30 UT at 0.8 mHz

A.Z. Nedie, R. Rankin and F.R. Fenrich, J. Geophys. Res., 2012

CHAIN GPS TEC observation of ULF waves in polar cap

Courtesy Dr. P.T. Jayachandran

Infrastructure funding for CHAIN is provided by the Canada Foundation for Innovation and the New Brunswick Innovation Foundation. CHAIN operation is conducted in collaboration with the Canadian Space Agency.

Using ISR to Study ULF Waves in the Polar CAP

Sondrestrom ISR observations of ionospheric convection in the polar cap associated with solar wind ULF fluctuations Kim et al., J. Geophys. Res.,, 2009

- Solar wind ULF fluctuations drive
- enhanced convection
- > ULF fluctuations in convection
- ➢ ionospheric heating

atmospheric gravity waves which couple ionosphere to neutral atmosphere

Some questions one could address with ISR:

> What effect do ULF waves have on the ionospheric plasma?

➢ How do these effects vary with latitude, local time, altitude and azimuthal wave number?

➤ Is ionospheric heating associated with solar wind ULF wave activity?

Do ULF waves couple ionosphere to neutral atmosphere via gravity waves?

➢ What are the dominant ULF wave sources? Are they different at polar cap and auroral latitudes?

Conclusions

>ULF waves are important in coupling between solar wind, magnetosphere and ionosphere.

>ULF waves cause oscillations in ionospheric density, electron and ion temperature, convection flow and electric field.

≻Lots of potential for ISR studies of ULF waves.